TABLE OF CONTENTS

CHAPTER I		
AIRCRAFT MISSION REQUIREMENTS AND PRELIMINARY ENGINE DESIGN		
Design Phases		- 1-1
Conceptual Design		, 1-1
Preliminary Design		
Detailed Design		. 1-1
Aircraft Mission Requirements and Figures of Merit		
Constraint Analysis		. 1-8
Mission Analysis		. 1-13
Engine Sizing and Cycle Selection	,	. 1-13
Cycle Modelling		. 1-26
Component Performance		. 1-28
Preliminary Component Design and Matching		

CHAPTER 2

L' in S

<u> 1</u>12

-

of the second second

1.1.1.1.

No. of the second se

No. 19

Yes and A

tierserven States

Survey of

14.85

ii

STATIC STRUCTURES	
Introduction	
Overall Engine Structure and Major Structural Components	
Design Issues	
Frames	
Casings	
Mounts	
Containment	
Structural Behavior and Analytical Methods	
Maneuver Loads	
Pressure Loads	
Thermal Loads	
Unbalanced Forces	
Limit Conditions	
Ultimate Loads	
Fatigue	
Damage Tolerance	
Material Properties	
Structural Testing	
Summary	

CHAPTER 3

FAN AND COMPRESSOR SYSTEMS	
Introduction	
Basic Aerodynamic principles, Components, and Definitions	
Vector Diagrams	
Blading	
Basic Equations	
Performance, Stall, Surge, and Stall Margin	
Trends in Compressor and Fan Design	
Design and Analysis Methods	
Stall Margin Correlation	
Efficiency Potential Correlation	
Axisymmetric Analysis	
Cascade Analysis and Blade Design	
Fan and Prop Fan Configurations	
Variable Geometry, Clearance, and Leakage	
Multi-spool, Variable Geometry and Bleed	
Leakage in Compressors	
о I	

TABLE OF CONTENTS

Clearance Control	1_17
Summary of Aerodynamic Design Considerations	
Airfoil Physical and Functional Mechanical Design	
Airfoil Mechanical Design Considerations	
Airfoil Loading and Environment	
Airfoil Failure Mechanisms	
Ingestion	
Airfoil Tradeoffs and Implications for Design	
Rotor Physical and Functional Description	
Rotor Design Considerations	
Rotor Loading and Environment	3-56
Rotor Failure Mechanisms	
Fatigue	3-60
Overspeed and Burst	
Vibration	
Rotor Tradeoffs and Implications for Design	
Fan and Compressor Casings	
Casing Design Considerations	
Casing Failure Mechanisms	
Buckling	
Vibration	
Other Failures	3-64
Casing Tradeoffs and Implications for Design	
Fan and Compressor Variable Vane Actuation Systems	
Actuation System Design Considerations	
Actuation System Failure Mechanisms	
Wear	
Hammershock	
Actuation System Tradeoffs and Implications for Design	
Fan and Compressor System Design Considerations	3-68
Containment and Vibratory Weak Link Criteria	3-68
System Vibration and Balance	
Stress Analysis of Rotor Disks	
Numerical Example of Rotor Disk Stresses	
Casing Containment Capability	
Low Cycle Fatigue Life Analysis	
CHAPTER 4	
COMBUSTOR AND AUGMENTOR DESIGN	
Combustor Aerodynamic Design	
Introduction	
Performance Requirements	
Combustion Efficiency	
Total Pressure Loss	4-1
Temperature Rise	

Combustor Length to Dome Height Ratio 4-6

TABLE OF CONTENTS

ni

Number of Fuel Injectors	4-8
Pattern Factor Correlations	4-8
Combustor Flow Distribution	4-9
Fuel Injection System	4-9
Dilution Zone	4-9
Liner Coolong	4-11
Combustor Mechanical Design	4-11
Combustor Analysis	4-13
uel Nozzle Design	4-15
gnition System	4-18

CHAPTER 5

:

1997 - 19

(61-1-12)Ven

Alexandra and

ALL STREAM

e de la constante de la consta

in in the

ANTO-MANAGE

polynomian (

 $\left\{ \cdot \right\}$

IURBINES	
Turbine Aerodynamic Design	
Introduction	5-1
Principles of Operation	5-6
Cycle (or Thermodynamic) Point of View	5-6
Turbine Aero Point of View	5-8
Radial Equilibrium	5-10
Performance Considerations	5-10
Basic Performance Parameters	5-10
Stage Flow Coefficient	
Reaction	5-13
The Turbine Map	5-15
Turbine Loss Sources	5-15
Design considerations	
Cooling Considerations	
Turbine Testing	
Turbine Mechanical Design	
High Pressure Turbine Function	5-30
Design Considerations and Goals	5-30
Turbine Operating Conditions	5-31
High Pressure Stator Component Parts	5-33
HPT Combustor Casing	5-33
Inner Nozzle Support and Inducer	5-33
HP Nozzle	5-34
HP Turbine Shroud	5-34
Static Seals	5-36
HP Rotor Component Parts	5-36
Compressor Discharge Seal (CDP) Disk	5-37
Forward Shaft	5-37
Forward Outer Seal (FOS) Disk and Retainer	5-37
HP Disk	5-38
Afi Retainer	5-38
Aft Shaft	5-38
HP Blade	5-39
The Mechanical Design Process	5-39
The Basic Design	5-41
Preliminary Design	5-41
Engineering Drawings	5-42
Working The Details	5-42
Component and Factor Testing	5-47
Final Certification Analysis	5-47
Low Pressure Turbine Design	5-50
Low Pressure Turbine Rotor Components	5-50
Blades	5-50

TABLE OF CONTENTS

iv

LPT Disks		
Interstage Seals	• • •	. 5-50
Blade Retainers		
Shafting		. 5-52
Low Pressure Turbine Stator Components	• • •	. 5-53
LPT Nozzles		
Shrouds		5-53
Interstage Seals		
Pressure Balance Seal		
Tressure Balance Seat.	•••	5 55
CHAPTER 6		
ENGINE QUALIFICATION AND CERTIFICATION		
Engine Qualification		6.)
Master Test Plan	•••	6.1
Program Master Plan	•••	0*1 ∡ t
Engine Spec and Program Master Plan	• • •	0-1 ∡ 1
Engine Spec and Program Master Plan	• • •	0~1 ∠ 1
Qualification for Production Release		
Engineering Program Plan	•••	0-i 2 *
Design Reviews	• • •	0-/
Component Qualification	,	b- 7
Corrosion Qualification		
Altitude Qualification		
Endurance Testing		
Operability Evaluation		6-14
CHAPTER 7		
BEARINGS AND SEALS		
Introduction		
Mainshaft Bearing Types		
Fatigue Life Considerations		
Ball Dynamic Analysis		
Heat Generation and Cooling		
Clearance Control		
Cage Slip		
Preloading of Roller Bearings		
Roller Skewing and End Wear		7-15
Static Capacity/Secondary Damage	,	7-16
Elastohydrodynamic Lubrication		
Materials		7-18
Dynamic Seal Types		7-20
Labrinth Seals		7-20
Clearance Control		7-20
Stick Slip Instability		7-22
Out of Round Instability		
Campbell's Criterion		
1/Rev Excitation		
Aeroelastic Instability		
Rotor-Stator Interaction		
Acoustic Coupling		
Damping		
Configuration and Materials Consideration		
Carbon Seal Design		
Circumferential Seals		
Face Seals		
Pressure Balanced Split Ring Intershaft Seal		
Split Ring Unbalanced Intershaft Seal		
Materials	• •	1-21

TABLE OF CONTENTS

Section 1

÷.

and the second second

Imp Design	 	 	 	 	 	 		 	. 7-3
Oil Scavenging	 	 	 	 	 	 	.,	 .	. 7-3
Fire Safety	 • • • • •	 	 	 	 	 	• •	 	. 7-3
Coking	 	 	 	 	 	 • • •		 	. 7-3
Interference Fitting of Bearing Rings	 	 	 	 	 . . .	 		 	7-3
Bearing Support Stiffness									
Thermal Out of Round	 	 	 	 	 	 		 	7-3
False Bearings	 	 	 	 	 • • •	 		 	7-3
Titanium Fires	 	 	 	 	 	 		 	7-3

CHAPTER 8

SECONDARY SYSTEMS	
Introduction	8-1
Ait Systems	8-1
HPT Cooling System	
LPT Cavity Purge System	8-5
Parasitic Leakage Purge System	
Heating Systems	8-9
Anti-leing/De-Icing	8-9
CDP Seal Bore Heating	
TRF Hub Heating	
Clearance Control Systems	
Flange Cooling	
LPT Case Cooling	
HPC Bore Cooling	
Seal Pressurization	
Labyrinth Seals	
Customer Bleed	
Oil Systems	
Lube Supply System	
Lube Tank	
Lube Pump	
Lube Pipe Lines and Jets	
Lube Scavenge System	
Lube Scavenge Pump	
Fuel Iol Cooler	
Chip Detectors	
Supm Vent System	
Ait-Oil Separators	
Oil Consumption	
Oil Filtration	
Lube Heat Rejection	
Fire Safety Analysis	
Sump/Support Heat Transfer Analysis	
Axial Bearing Thrust Control	8-26
HP Rotor Thrust	
Interfaces	
1990/1900	0°4V
CHAPTER 8	
INLETS AND EXHAUST SYSTEMS	

vi

NLETS AND EXHAUST SYSTEMS	·
Aerodynamic Aspects of Inlets and Exhaust Systems	9-1
Introduction	9-1
Inlet Design	9-1
Elements of the Subsonic Inlet	9-1
Inlet Performance	9-1
Low Speed Design Considerations	9-4

TABLE OF CONTENTS

and a second second

	_ /
Exhaust Nozzles	
Elements of the Exhaust System	
Flowpath Design Considerations	
Exhaust System Performance	
Thrust Reverser	. 9-8
Elements of the Thrust Reverser System	
Reverser Flowpath Considerations	
Reverser Performance	
Nacelle Design	. 9-9
Elements of the Nacelle	. 9-9
Nacelle Performance	. 9-9
Installed Performance	. 9-10
Acoustic Considerations	9-10
Mechanical Aspects of Inlets and Exhaust Systems	
Mechanical Design of Inlet	
Lightening Zones	
Commercial High By-Pass Fan Nozzle/Reverser	
Fan Reverser	
Fixed Structure Component System	
Bulkhead Sidewalls	
Inner Cowl	
Outer Support Assembly	
Vane Deflectors	
Translating Cowl	
Fan Reverser Opening System	
Blocker Doors	
Fan Reverser Control Actuation System	
Supply Manifold	
Deploy Operation	
Stow	
Commercial High By-Pass Primary Exhaust System Design	0.76
Lightening strikes	9-26
Abnormal Condition Requirements	0.26
Structural Property Variables	9-27
Weight and Producibility	0_77
Military Afterburning Variable Nozzle System	0-27
Components and Operation	
	7-27
CHAPTER 10	
INSTALLATION AND CONFIGURATION	
	0-1
Commercial Nacelle Systems	
Inlet	
Engine Buildup (EBU) Hardware	0-5
Exhaust System	0-10
Military Engine Installations	0-10
Engine Installation Design Considerations	
Installation Considerations Affecting Engine Maintainability	
Engine Envelope	
Engine-Airframe Interfaces	0-16
Configuration	
Design Philosophy	
Design Approach	
Technical Requirements	
Design Practices	
Design Reviews	

TABLE OF CONTENTS

vii

ф. - А

40

Design Tools, Assembly Aids, and Customer Mockups 1	0-36
Engineering Design Tool	0-36
Assembly Aid	0-37
Mockup	0-37
Production Engine Assemblies	

F

. نیگ

and a second s

Sec. Sec. 1.

New Sector

a (ALVIN,

10-10-10 10-10-10 10-10-10-10

Constant of the second se

e en er er

. .

CHAPTER 11	
CONTROLS ENGINEERING	
Introduction	
Applications	
Control System Requirements	
Control Philosophy	H-5
Controls Terminology	
Control Strategy	11-5
Developing Requirements	11-5
Control System Design	11-8
Stability and response	
Definitions and Nomenclature	11-9
Design Requirements	
Design Tools and Methods	
Basic Engine Control Functions	
Core and Fan Speed Control	
Acceleration and Deceleration Control	
Variable Stator Vane control	
Speed and CDP Min and Max Limiting	11 33
Commercial Controls Objectives	
Power Management Control	11-20
Idle Speed Control and Scheduling	11-20
Visible Block Water A DWA	11-32
Variable Bleed Valves (VBV's)	11-3/
Devene Three Colordania Rolor Active Clearance Control	11-39
Reverse Thrust Scheduling	
Military Control Objectives	11-45
Fan Inlet Guide Vane Control	11-45
Turbine Temperature Control	11-45
Fan Operating Line Control	11-46
Augmentor Fuel Scheduling	11-50
Special Functions	
Component Design	11-55
Hydromechanical Control	11-57
Main Engine Controls (MEC's)	11-59
Hydromechanical Units (HMU's)	11-62
Augmentor Fuel Control	
Other Control Components	
Pumps	11-66
Actuators	11-69
Valves	11-71
Sensors	11-74
Electronic Controls	11-78
History	11-78
Environmental Design Factors	
Temperature	
Vibration	
Lightening	
Electromagnetic Interference	
Nuclear Radiation	
	02

TABLE OF CONTENTS

viii

Digital Controls	
Definition	
Comparison to Analog II-	·87
Redundancy Management	-91
Adjustment Capability 11-	92
Maintainability Features	93
Aircraft Bus Interfaces 11-	-94
Throughput	94
Resolution	96
Sampling and Digital-to-Analog Conversion 11-	97
Software	
Real-Time Software 11-	99
Development Process	
Functional Allocation	

CHAPTER 12

LIFE ANALYSIS	
Qualification/Certification, Life Analysis	
Commercial Life Analysis	
Thermal Analysis	
Stress Analysis	
Flight Cycle	· • • • • • • • • • • • • • • • • • • •
Materials Data	
Military Approach	
Life Analysis Summary	

CHAPTER 13

PR	ODUCT SUPPORT	
]	Product Support	13-1
	Maintenance	
J	Field Related Problems	13-5
	Engine Aging	
	Condition Monitoring	
	End User Assessment	

TABLE OF CONTENTS

2

8-5 S.

D. A